

Behaviors and Social Determinants of BMI Trajectories in South Korea : A Latent Class Analysis

연세대학교 약학대학 박사과정 최유리

Introduction: 왜 BMI 궤적인가?

- 비만(BMI ≥25)과 과체중(BMI 23-24.9)는 전 세계적으로 주요 공중보건 문제
 - WHO (2022): 비만을 만성·복합 질환으로 재규정, 전 세계적 대응 촉구
 - 한국 성인 비만 유병률: 2019년 34.4% → 2023년 37.2% (지속 증가)
- 비만은 T2DM, CVD, 뇌졸중, 여러 암, 조기 사망 및 장애 위험과 연관
- 비만은 행동과 사회경제적 지위가 장기간 축적된 결과
 - 낮은 SES: 건강한 식단, 운동 자원 부족, 스트레스 노출 증가 → 비만 위험 증가

- 단일 시점 BMI는 체중 누적 위험을 반영하지 못함
 - 같은 BMI 라도 성인 초기부터 고 BMI 유지 vs 중년 이후 급격한 증가 → 건강위험이 다름
- BMI 궤적 분석의 장점
 - 생애 전반 체중 변화 패턴과 누적 위험 정량화
 - 만성질환 예측력 향상
 - 중재 타이밍 또는 대상 집단을 더 정밀하게 정의 가능

Introduction: Trajectory 접근의 필요성

- LCGM 방법론적 특징:
 - 반복 측정된 BMI 자료에서 관찰되지 않은 잠재 계층을 추정
 - 기존 고정 BMI 범주 대신 데이터 기반 비모수적 잠재 계층 분석 활용
 - ✓ 오분류 및 정보 손실 감소
 - ✓ 다양한 체중 변화 패턴 (증가, 유지, 감소 등)을 구조적으로 포착
 - 각 궤적 계층에 영향을 미치는 인구사회학적/행동 요인 탐색
- 연구 목표:
 - 10년 패널 데이터에 잠재계층 성장 모형 (LCGM)을 적용하여 BMI 궤적의 잠재 계층 (latent classes)을 식별
 - 각 잠재 계층에 영향을 미치는 요인을 구분하여 궤적별 BMI 수준 차이를 평가
 - ✓ 수정가능한 요인: 건강행동 (흡연, 음주, 규칙적 운동 등)
 - ✓ 수정 불가능한 요인: 사회경제적 지위 (교육, 소득 등)

Method

Data source

- 한국의료패널 (KHPS) 1차: 2009-2018년 자료 사용
- 병원방문, 건강검진을 포함한 의료 서비스 이용에 대한 포괄적인 정보 수집
- 사회경제적 지위, 건강 행태, 건강 상태, 파악

Study Population

- 2009-2018년 balanced panel을 구성
- 10년간 BMI가 결측인 경우 제외
 - : 완전한 BMI 정보 없이는 BMI 궤적 분류 불가능
- 행동, 사회적 요인과 같은 주요 공변량 관측치가 5개 미만인 경우 제외
 - ✓ 결측 처리: 다른 관측된 변수들을 활용하여 랜덤 포레스트 기반으로 imputation

Method

Key variables

- outcome: BMI

구분	변수	기준		
사회경제적지위	고령	65세 이상/ 미만		
	교육 수준	고등학교 졸업 이상/미만		
	가구 소득수준	등위 0-10분위 기준 저·중·고		
건강상태	만성질환	다음 7개 만성질환 중 ≥1개 입원 또는 외래 진료 여부 (유/무) • 고혈압(I10-I15), 당뇨병(E10-E14), 고지혈증(E78), 관절 질환 (M00-M25), 결핵(A15-A19), 허혈성 심장질환(I20-I25), 뇌혈관 질환(I60-I69)		
건강 행태	흡연 습관	흡연 경험 있음 (현재, 과거)/ 흡연 경험 없음		
	음주 습관	폭음(유/무) • 지난 1개월 내 2-3회 이상 음주 & (남성) 소주 ≥7잔 또는 맥주 ≥5캔 / (여성) 소주 ≥6잔 또는 맥주 ≥4캔		
	운동 습관	규칙적 운동 유/무		
건강행태 갯수		흡연 경험 무+ 폭음 무+규칙적 운동 유		

Empirical Strategy

- LCGA (latent class growth analysis): stage 1
- 반복 측정된 BMI 자료로 서로 다른 BMI 변화 패턴을 보이는 잠재 계층(trajectory classes) 식별
- 최대우도추정(MLE)을 이용해 유사한 궤적을 공유하는 하위집단을 비모수적으로 추정
- 각 계층별로 상이한 절편, 기울기를 허용
- 1단계: 공변량 없이 LCGA 모형을 적합하여 잠재 BMI 궤적(class)을 식별하고, 각 개인의 posterior class probability와 측정모형 파라미터를 추정

$$Y_{ij} = \eta_{0i} + \eta_{1i} \cdot time_j + \varepsilon_{ij}$$

$$\eta_0 = \gamma_{0k} + \zeta_{0i}$$

$$\eta_{1i} = \gamma_{10k} + \gamma_{11k} + l(male) + \zeta_{1i}$$
 여기서 i는 개인, j는 시점, k는 잠재계층

- 시간항(선형, 2차, 3차)과 잠재계층 수(1-6개)를 변화시킨 모형을 적합하고, BIC, 엔트로피, 평균 사후확률 (posterior class probability) 등을 종합하여 최적 계층 구조를 선정

Empirical Strategy

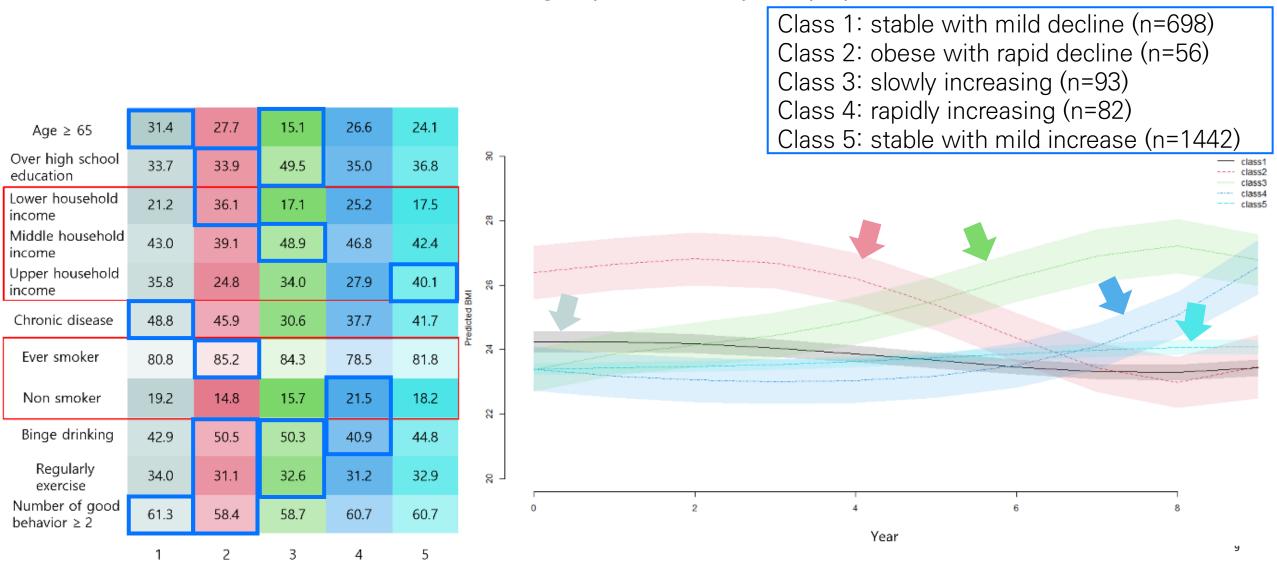
- LCGA (latent class growth analysis): stage 2
 - Stage 1에서 추정된 측정모형을 고정한 상태에서, 다항 로지스틱 회귀를 통해 공변량 Z_i가 class membership에 미치는 영향을 추정

$$P(C_i = k | Z_i) = \frac{\exp(\alpha_k + \beta_k^T Z_i)}{\sum_{k=1}^{K} \exp(\alpha_k + \beta_k^T Z_i)}, k=1,2,\dots K$$

- 이를 통해 궤적 형태는 유지하면서, 공변량과 계층 간 연관성을 편향 최소화 방식으로 평가함.

- 추가 분석
 - 계층별 선형 혼합모델 (LMM)으로 공변량이 BMI 수준에 미치는 계층 간 (between class)/계층 내 (within-class) 영향을 구분

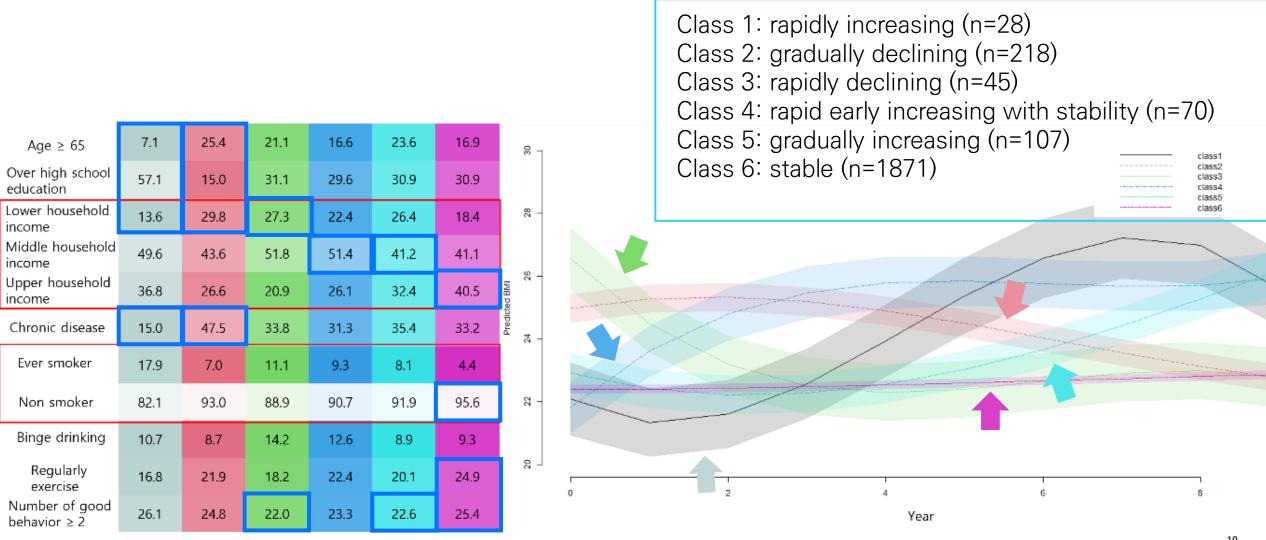
Results

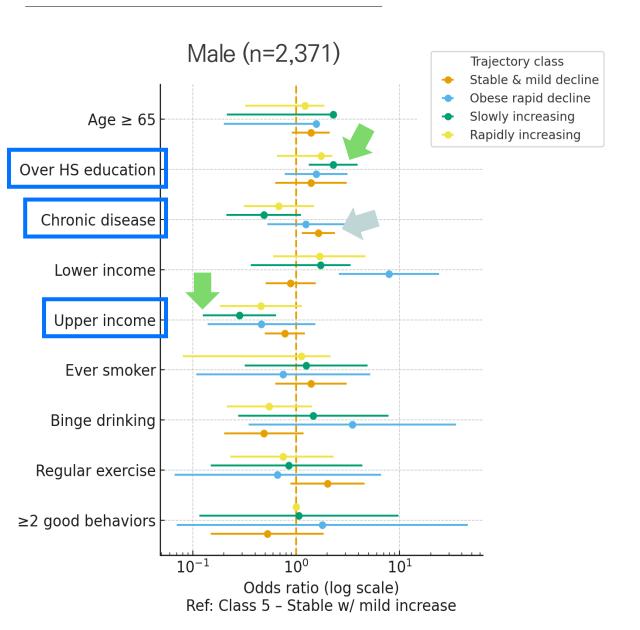

- Characteristic of Study Population
 - Balanced panel (n=10,703) -> study population (n=4,707)

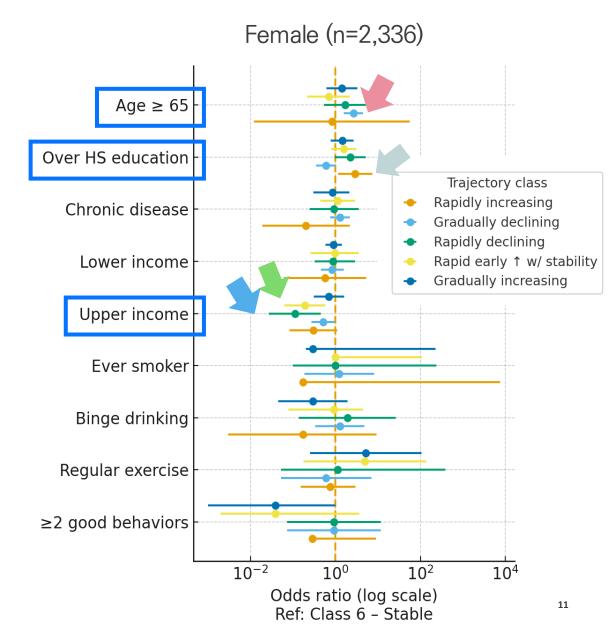
Variables	Overall panel (n=47 070)	Male (n=23 710, 50.37%)	Female (n=23 360, 49.63%)	
Mean BMI (s.d.)	23.39 (2.95)	23.851 (2.773)	22.928 (3.048)	
Older than aged 65 (%)	10,603 (22.53)	6,187 (26.09)	4,416 (18.9)	
High school education attainment or over (%)	15,541 (33.02)	8,599 (36.27)	6,942 (29.72)	
Having Chronic illness (%)	18,082 (38.42)	10,331 (43.57)	8,050 (34.46)	
Household income (%)				
Middle	20,034 (42.56)	10,198 (43.01)	9,839 (42.12)	
Upper	17,806 (37.83)	8,950 (37.75)	8,856 (37.91)	
Smoking status (%)				
Past smoker	10,329 (21.94)	9,639 (40.65)	667 (2.86)	
Current smoker	10,230 (21.73)	9,672 (40.79)	568 (2.43)	
Binge drinking (%)	12,737 (27.06)	10,532 (44.42)	2,256 (9.66)	
Regular exercise (%)	13,491 (28.66)	7,856 (33.13)	5,635 (24.12)	
Number of health behavior (%)				
3	1,079 (2.29)	575 (2.43)	504 (2.16)	
2	11,386 (24.19)	5,057 (21.33)	6,329 (27.09)	
1	26,730 (56.79)	10,931 (46.10)	15,799 (67.63)	

- Latent BMI trajectory: Overview
 - 남성: 5개 궤적 계층
 - 여성: 6개 궤적 계층
 - 모형 적합도
 - ✓ 모든 클래스 prevalence >1%(희귀 계층 없음)
 - ✓ 모든 클래스에서 평균 사후확률 ≥0.80
 - → 분류 품질 우수
 - ✓ 비선형 항 유의
 - → BMI 궤적의 비선형 패턴을 적절히 포착

Results: Male trajectory classes (5-class model)

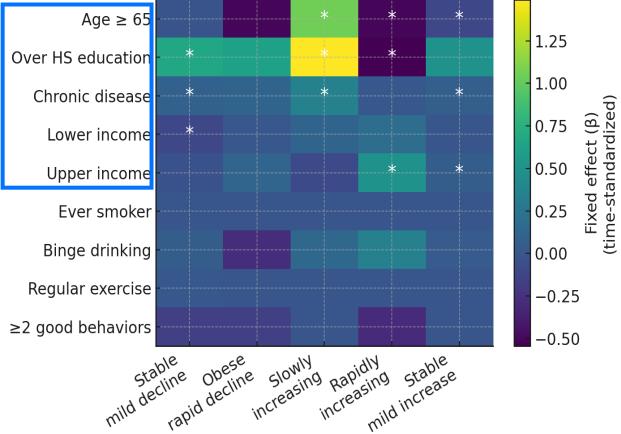

(Distribution of covariates during 10y and BMI trajectory by latent classes in male)


Results: Female trajectory classes (6-class model)


2

(Distribution of covariates during 10y and BMI trajectory by latent classes in male)

Results: Determinants of class membership (Two-stage model)


Results: SES & health behaviors: Effects on mean BMI

- 전체적으로 SES 관련 변수는 건강행동 변수보다 평균 BMI 와 더 일관된 연관성
- → 건강행동 효과는 제한적이지만, 만성질환 유무와 SES는 모든 성별에서 BMI 수준과 뚜렷하게 연결됨


Variables	Male		Female	
Variables	Coefficient	p-value	Coefficient	p-value
class 1	0.03	(0.797)	1.49**	(0.003)
class2	1.226**	(<.01)	1.94**	(<.01)
class3	1.965**	(<.01)	1.416**	(<.01)
class 4	0.175	(0.538)	1.777**	(<.01)
class 5	Ref		0.751**	(0.005)
class 6	-		Ref	
Age≥65	-0.135**	(0.003)	0.004	(0.943)
Over high school education	0.27**	(0.006)	-1.013**	(<.01)
Chronic disease	0.101**	(<.01)	0.134**	(<.01)
Lower household income	-0.031	(0.249)	-0.036	(0.225)
Upper household income	0.028	(0.200)	-0.035	(0.149)
Ever smoker	-0.02	(0.677)	0.137	(0.096)
Binge drinking	0.052*	(0.033)	0.021	(0.558)
Regularly exercise	-0.001	(0.954)	-0.007	(0.898)
Number of good behaviors ≥ 2	-0.024	(0.407)	-0.035	(0.504)

Results: Within-class heterogeneity

Within-Class Effects of Covariates on Mean BMI (Men)

Within-Class Effects of Covariates on Mean BMI (Women)

- 계층별로 공변량 효과가 상이 -> 궤적에 따라 SES, 연령 효과 상이
- 만성질환, 교육, 소득은 일부 계층에서 평균 BMI와 유의하게 연관
- 계층 내 변동성은 남성보다 작지만, 여전히 SES가 건강행동보다 BMI에 더 큰 영향
- 교육, 소득, 만성질환의 효과 차이 관찰

Discussion

- 10년 패널에서 BMI에 LCGM 적용 → 성별로 상이한 궤적 구조 확인
- 남성: 5개 classes, 경미한 증가형/감소형 안정 궤적이 대부분
- 여성: 6개 classes, 경미한 감소를 동반한 안정 궤적이 대다수
- 2단계 LCGM & 시간 표준화 LMM 결과
- SES가 건강행태보다 평균 BMI와 궤적 소속에 더 강하고 일관된 영향
- 만성질환은 성별과 궤적에 무관하게 높은 BMI와 지속적으로 연관
- 교육, 소득 연령 효과는 궤적 계층에 따라 방향과 크기가 다름

- 기존 연구: BMI 궤적과 골다공증, 심혈관질환, 당뇨병, 고혈압, 신장질환, 암 등과의 연관성 제시
- 본연구의 기여
 - 단일 시점 BMI 대신, 궤적의 방향과 형태를 고려
 - LCGM+LMM로 "어떤 궤적이 존재하는가?"분 아니라 "해당 궤적에 누가 속하고, 그 안에서 누가 더 높은 BMI를 가지는가?"까지 분석
 - 성별 및 계층별 이질성을 동시에 반영한 실증분석

Discussion

- · SES-BMI 관계 패턴
 - 계층 간 공통 경향
 - ✓ 고령 비율 ↑ → 만성질환 ↑ → 대체로 감소형 궤적
 - ✓ 교육 또는 저소득 → 감소형 궤적
 - 계층 내 차이
 - ✓ 만성질환: 거의 모든 질환에서 BMI 증가 요인, 다만 크기는 상이
 - ✓ 저소득: 일부 감소형 궤적에서 낮은 BMI와 연관
 - ✓ 교육 수준 효과는 성별, 궤적 조합에 따라 상반 (남성: 고학력-BMI 증가/여성:고학력-BMI 감소)
 - 시사점
 - ✔ BMI 궤적은 SES와 건강 상태가 맞물린 결과이며, 같은 BMI라도 궤적에 따라 위험도가 달라짐

Strengths

- 전국 대표 10년 패널 데이터 활용
- LCGM (2 stage) + LMM 을사용
 - ✓ 집단수준 이질성과 개인수준 변이를 함께 반영
 - ✓ 궤적 분류+결정요인 분석을 통합적으로 수행
- 성별을 분리하여 남녀 간 BMI 요인 차이를 구조적으로 제시

Limitation

- BMI는 자가보고 값이며, 체지방 분포와 근육량 반영 한계
- 비모수 궤적 모형
 - ✓ 초기값과 지역해(local minimum)에 민감
 - → 다중 초기값, greedy search, 충분한 반복으로 완화 시도
 - ✓ 관찰자료 기반, 인과 추론 제한
 - → SES-BMI-건강결과 간 경로는 향후 인과 모형 필요

Discussion

- Policy & Clinical implications
 - SES는 쉽게 파악가능
 - ✓ 저소득, 저학력, 만성질환 집단 → 고위험 궤적 후보
 - 궤적 기반 평가
 - ✓ 같은 BMI라도 누적 패턴이 다른 집단을 구분 →맞춤형 개입 타겟 설정 가능
 - ✓ 남성: 저교육, 저소득
 - ✔ 여성: 고령, 저소득+급격 변화 궤적에 주의
 - 비만과 SES 간 악순환을 고려한 장기적 정책의 필요성 강조
 - ✓ 식이, 신체활동 환경, 도시계획 등

Conclusion

- 궤적기반접근은 BMI 변화의 방향, 패턴과 SES/건강행동/만성질환의 복합 작용을 드러내 단일 시점 BMI보다 더 정밀한 위험 평가를 가능하게 함
- 본 연구는 성별에 따른 BMI 궤적 구조를 제시하고, SES가 건강행태보다 BMI 수준 및 궤적 소속에 더 강하게 작용함을 확인
- 향후 연구
 - ✓ SES → BMI 궤적 → 건강 결과로 이어지는 인과 경로 규명
 - ✔ 궤적 기반 표적 개입의 효과 평가 및 정책 설계

KATHA

